Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 893: 164438, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247736

RESUMO

During the Southwest monsoon (SWM), aeolian dust is mainly supplied via wet deposition over the northeast Arabian Sea (NEAS). To understand their impact on the biogeochemistry of the Arabian Sea, it is important to identify their sources and characteristics. In this context, wet deposit particulate (WDP) samples were collected at a coastal station (Goa; 15.4° N, 73.8° E) in the NEAS during the SWM for three years. These samples were used to characterize and identify mineral dust sources using mineralogical, elemental, and isotopic (Sr and Nd) signatures. The WDP samples were classified as Beginning of Monsoon (BM, June samples), Mid Monsoon (MM, July-August samples) and End of Monsoon (EM, September samples). Clay mineralogical composition indicate high palygorskite content during BM, which subsequently found to decrease in MM, and almost negligible in EM. However, smectite is highest during MM, with moderate presence of palygorskite during this period. The considerable variation in the relative percentages of clay minerals suggests significant temporal variability in dust sources which is further corroborated by the radiogenic isotopic composition. A strong seasonality in the isotopic composition is observed with 87Sr/86Sr ratio being relatively less radiogenic during MM than the BM and highly radiogenic at the EM. Whereas ƐNd values show an opposite trend to 87Sr/86Sr ratios throughout the monsoon, with more radiogenic ƐNd in the MM, and less radiogenic at the EM. End member mixing plot indicate dominant contribution of dust from the Arabian Peninsula (ARB) and Northeast African (NEA) sources during BM and MM, while a shift towards the Thar desert and Southwest Asian (SWA) sources at the EM. Trace elements associated with different sources were quantified and suggest high Fe concentration is associated with NEA dust sources, despite ARB being major supplier of aeolian dust to the Arabian Sea.

2.
Nat Commun ; 13(1): 7561, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36476471

RESUMO

Global overturning circulation underwent significant changes in the late Miocene, driven by tectonic forcing, and impacted the global climate. Prevailing hypotheses related to the late Miocene deep water circulation (DWC) changes driven by the closure of the Central American Seaways (CAS) and its widespread impact remains untested due to the paucity of suitable records away from the CAS region. Here, we test the hypothesis of the large-scale circulation changes by providing a high-resolution record of DWC since the late Miocene (11.3 to ~2 Ma) from the north-western Indian Ocean. Our investigation reveals a progressive shift from Pacific-dominated DWC before ~9.0 Ma to the onset of a modern-like DWC system in the Indian Ocean comprising of Antarctic bottom water and northern component water during the Miocene-Pliocene transition (~6 Ma) caused by progressive shoaling of the CAS and suggests its widespread impact.


Assuntos
População da América Central , Água , Humanos , Oceano Índico , Regiões Antárticas
3.
Sci Total Environ ; 843: 157035, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780895

RESUMO

El Niño Southern Oscillation (ENSO) is one of the dominant climate modes influencing global precipitation and temperature. ENSO has a large impact on the monsoonal precipitations over the Indian subcontinent and thereby influences hydrological conditions. Due to dearth of long-term instrumental records of the hydrological parameters on sufficient spatial resolution, it is difficult to assess the impact of ENSO on regional hydrology. Though several geochemical proxies have been used to reconstruct past ENSO events through tracing the changes in past hydrological and climatic parameters, however, such reconstructions are often complicated by the influence of multiple processes and/or factors and their nonlinear relation with the proxy records. In this study, Sr isotope composition (87Sr/86Sr) was measured in Porites coral from the Lakshadweep, south-eastern Arabian Sea to reconstruct past ENSO events and to trace its regional hydrological impacts. The high precision measurements of 87Sr/86Sr in Lakshadweep coral show resolvable variations ranging from 0.709080 to 0.709210. The 87Sr/86Sr record shows an inverse relation with Niño 3.4 record; lower values matched with El Niño years and higher values with La Niña years. Our investigation reveals that ENSO driven precipitation changes impacted submarine groundwater discharge (SGD) to the Minicoy Atoll and resulted in 87Sr/86Sr variations of the Minicoy Atoll water. Therefore, deviation from the average seawater 87Sr/86Sr value can be quantified in terms of SGD contribution to the Minicoy Atoll. Our estimates based on binary mixing between seawater and SGD 87Sr/86Sr suggest a significant supply of SGD, maximum up to ~20 % of the total volume of the Minicoy Atoll during La Niña years due to higher rainfall compared to El Niño years. This finding highlights potential application of coral 87Sr/86Sr record as an alternate proxy to reconstruct past ENSO events and to trace its quantitative impact on regional hydrology, chemical and nutrient fluxes to coastal oceans via SGD.


Assuntos
Antozoários , El Niño Oscilação Sul , Isótopos de Estrôncio , Animais , Antozoários/química , Hidrologia , Oceanos e Mares , Isótopos de Estrôncio/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...